namespace my.utils { using System; using System.Collections; using System.Text; using System.Text.RegularExpressions; /// /// This Class implements the Difference Algorithm published in /// "An O(ND) Difference Algorithm and its Variations" by Eugene Myers /// Algorithmica Vol. 1 No. 2, 1986, p 251. /// /// There are many C, Java, Lisp implementations public available but they all seem to come /// from the same source (diffutils) that is under the (unfree) GNU public License /// and cannot be reused as a sourcecode for a commercial application. /// There are very old C implementations that use other (worse) algorithms. /// Microsoft also published sourcecode of a diff-tool (windiff) that uses some tree data. /// Also, a direct transfer from a C source to C# is not easy because there is a lot of pointer /// arithmetic in the typical C solutions and i need a managed solution. /// These are the reasons why I implemented the original published algorithm from the scratch and /// make it avaliable without the GNU license limitations. /// I do not need a high performance diff tool because it is used only sometimes. /// I will do some performace tweaking when needed. /// /// The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents /// each line is converted into a (hash) number. See DiffText(). /// /// Some chages to the original algorithm: /// The original algorithm was described using a recursive approach and comparing zero indexed arrays. /// Extracting sub-arrays and rejoining them is very performance and memory intensive so the same /// (readonly) data arrays are passed arround together with their lower and upper bounds. /// This circumstance makes the LCS and SMS functions more complicate. /// I added some code to the LCS function to get a fast response on sub-arrays that are identical, /// completely deleted or inserted. /// /// The result from a comparisation is stored in 2 arrays that flag for modified (deleted or inserted) /// lines in the 2 data arrays. These bits are then analysed to produce a array of Item objects. /// /// Further possible optimizations: /// (first rule: don't do it; second: don't do it yet) /// The arrays DataA and DataB are passed as parameters, but are never changed after the creation /// so they can be members of the class to avoid the paramter overhead. /// In SMS is a lot of boundary arithmetic in the for-D and for-k loops that can be done by increment /// and decrement of local variables. /// The DownVector and UpVector arrays are alywas created and destroyed each time the SMS gets called. /// It is possible to reuse tehm when transfering them to members of the class. /// See TODO: hints. /// /// diff.cs: A port of the algorythm to C# /// Created by Matthias Hertel, see http://www.mathertel.de /// This work is licensed under a Creative Commons Attribution 2.0 Germany License. /// see http://creativecommons.org/licenses/by/2.0/de/ /// /// Changes: /// 2002.09.20 There was a "hang" in some situations. /// Now I undestand a little bit more of the SMS algorithm. /// There have been overlapping boxes; that where analyzed partial differently. /// One return-point is enough. /// A assertion was added in CreateDiffs when in debug-mode, that counts the number of equal (no modified) lines in both arrays. /// They must be identical. /// /// 2003.02.07 Out of bounds error in the Up/Down vector arrays in some situations. /// The two vetors are now accessed using different offsets that are adjusted using the start k-Line. /// A test case is added. /// /// 2006.03.05 Some documentation and a direct Diff entry point. /// /// 2006.03.08 Refactored the API to static methods on the Diff class to make usage simpler. /// 2006.03.10 using the standard Debug class for self-test now. /// compile with: csc /target:exe /out:diffTest.exe /d:DEBUG /d:TRACE /d:SELFTEST Diff.cs /// public class Diff { /// details of one difference. public struct Item { /// Start Line number in Data A. public int StartA; /// Start Line number in Data B. public int StartB; /// Number of changes in Data A. public int deletedA; /// Number of changes in Data A. public int insertedB; } // Item /// /// Shortest Middle Snake Return Data /// private struct SMSRD { internal int x, y; // internal int u, v; // 2002.09.20: no need for 2 points } #region self-Test #if (SELFTEST) /// /// start a self- / box-test for some diff cases and report to the debug output. /// /// not used /// always 0 public static int Main(string[] args) { StringBuilder ret = new StringBuilder(); string a, b; System.Diagnostics.ConsoleTraceListener ctl = new System.Diagnostics.ConsoleTraceListener(false); System.Diagnostics.Debug.Listeners.Add(ctl); System.Console.WriteLine("Diff Self Test..."); // test all changes a = "a,b,c,d,e,f,g,h,i,j,k,l".Replace(',', '\n'); b = "0,1,2,3,4,5,6,7,8,9".Replace(',', '\n'); System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "12.10.0.0*", "all-changes test failed."); System.Diagnostics.Debug.WriteLine("all-changes test passed."); // test all same a = "a,b,c,d,e,f,g,h,i,j,k,l".Replace(',', '\n'); b = a; System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "", "all-same test failed."); System.Diagnostics.Debug.WriteLine("all-same test passed."); // test snake a = "a,b,c,d,e,f".Replace(',', '\n'); b = "b,c,d,e,f,x".Replace(',', '\n'); System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "1.0.0.0*0.1.6.5*", "snake test failed."); System.Diagnostics.Debug.WriteLine("snake test passed."); // 2002.09.20 - repro a = "c1,a,c2,b,c,d,e,g,h,i,j,c3,k,l".Replace(',', '\n'); b = "C1,a,C2,b,c,d,e,I1,e,g,h,i,j,C3,k,I2,l".Replace(',', '\n'); System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "1.1.0.0*1.1.2.2*0.2.7.7*1.1.11.13*0.1.13.15*", "repro20020920 test failed."); System.Diagnostics.Debug.WriteLine("repro20020920 test passed."); // 2003.02.07 - repro a = "F".Replace(',', '\n'); b = "0,F,1,2,3,4,5,6,7".Replace(',', '\n'); System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "0.1.0.0*0.7.1.2*", "repro20030207 test failed."); System.Diagnostics.Debug.WriteLine("repro20030207 test passed."); // Muegel - repro a = "HELLO\nWORLD"; b = "\n\nhello\n\n\n\nworld\n"; System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "2.8.0.0*", "repro20030409 test failed."); System.Diagnostics.Debug.WriteLine("repro20030409 test passed."); // test some differences a = "a,b,-,c,d,e,f,f".Replace(',', '\n'); b = "a,b,x,c,e,f".Replace(',', '\n'); System.Diagnostics.Debug.Assert(TestHelper(Diff.DiffText(a, b, false, false, false)) == "1.1.2.2*1.0.4.4*1.0.6.5*", "some-changes test failed."); System.Diagnostics.Debug.WriteLine("some-changes test passed."); System.Diagnostics.Debug.WriteLine("End."); System.Diagnostics.Debug.Flush(); return (0); } public static string TestHelper(Item []f) { StringBuilder ret = new StringBuilder(); for (int n = 0; n < f.Length; n++) { ret.Append(f[n].deletedA.ToString() + "." + f[n].insertedB.ToString() + "." + f[n].StartA.ToString() + "." + f[n].StartB.ToString() + "*"); } // Debug.Write(5, "TestHelper", ret.ToString()); return (ret.ToString()); } #endif #endregion /// /// Find the difference in 2 texts, comparing by textlines. /// /// A-version of the text (usualy the old one) /// B-version of the text (usualy the new one) /// Returns a array of Items that describe the differences. public Item [] DiffText(string TextA, string TextB) { return(DiffText(TextA, TextB, false, false, false)); } // DiffText /// /// Find the difference in 2 text documents, comparing by textlines. /// The algorithm itself is comparing 2 arrays of numbers so when comparing 2 text documents /// each line is converted into a (hash) number. This hash-value is computed by storing all /// textlines into a common hashtable so i can find dublicates in there, and generating a /// new number each time a new textline is inserted. /// /// A-version of the text (usualy the old one) /// B-version of the text (usualy the new one) /// When set to true, all leading and trailing whitespace characters are stripped out before the comparation is done. /// When set to true, all whitespace characters are converted to a single space character before the comparation is done. /// When set to true, all characters are converted to their lowercase equivivalence before the comparation is done. /// Returns a array of Items that describe the differences. public static Item [] DiffText(string TextA, string TextB, bool trimSpace, bool ignoreSpace, bool ignoreCase) { // prepare the input-text and convert to comparable numbers. Hashtable h = new Hashtable(TextA.Length + TextB.Length); // The A-Version of the data (original data) to be compared. DiffData DataA = new DiffData(DiffCodes(TextA, h, trimSpace, ignoreSpace, ignoreCase)); // The B-Version of the data (modified data) to be compared. DiffData DataB = new DiffData(DiffCodes(TextB, h, trimSpace, ignoreSpace, ignoreCase)); h = null; // free up hashtable memory (maybe) LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length); return CreateDiffs(DataA, DataB); } // DiffText /// /// Find the difference in 2 arrays of integers. /// /// A-version of the numbers (usualy the old one) /// B-version of the numbers (usualy the new one) /// Returns a array of Items that describe the differences. public static Item [] DiffInt(int[] ArrayA, int[] ArrayB) { // The A-Version of the data (original data) to be compared. DiffData DataA = new DiffData(ArrayA); // The B-Version of the data (modified data) to be compared. DiffData DataB = new DiffData(ArrayB); LCS(DataA, 0, DataA.Length, DataB, 0, DataB.Length); return CreateDiffs(DataA, DataB); } // Diff /// /// This function converts all textlines of the text into unique numbers for every unique textline /// so further work can work only with simple numbers. /// /// the input text /// This extern initialized hashtable is used for storing all ever used textlines. /// ignore leading and trailing space characters /// a array of integers. private static int[] DiffCodes(string aText, Hashtable h, bool trimSpace, bool ignoreSpace, bool ignoreCase) { // get all codes of the text string []Lines; int []Codes; int lastUsedCode = h.Count; object aCode; string s; // strip off all cr, only use lf as textline separator. aText = aText.Replace("\r", ""); Lines = aText.Split('\n'); Codes = new int[Lines.Length]; for (int i = 0; i < Lines.Length; ++i) { s = Lines[i]; if (trimSpace) s = s.Trim(); if (ignoreSpace) { s = Regex.Replace(s, "\\s+", " "); // TO!DO: optimization: faster blank removal. } if (ignoreCase) s = s.ToLower(); aCode = h[s]; if (aCode == null) { lastUsedCode++; h[s] = lastUsedCode; Codes[i] = lastUsedCode; } else { Codes[i] = (int)aCode; } // if } // for return(Codes); } // DiffCodes /// /// This is the algorithm to find the Shortest Middle Snake (SMS). /// /// sequence A /// lower bound of the actual range in DataA /// upper bound of the actual range in DataA (exclusive) /// sequence B /// lower bound of the actual range in DataB /// upper bound of the actual range in DataB (exclusive) /// a MiddleSnakeData record containing x,y and u,v private static SMSRD SMS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB) { SMSRD ret; int MAX = DataA.Length + DataB.Length + 1; int DownK = LowerA - LowerB; // the k-line to start the forward search int UpK = UpperA - UpperB; // the k-line to start the reverse search int Delta = (UpperA - LowerA) - (UpperB - LowerB); bool oddDelta = (Delta & 1) != 0; /// vector for the (0,0) to (x,y) search int[] DownVector = new int[2* MAX + 2]; /// vector for the (u,v) to (N,M) search int[] UpVector = new int[2 * MAX + 2]; // The vectors in the publication accepts negative indexes. the vectors implemented here are 0-based // and are access using a specific offset: UpOffset UpVector and DownOffset for DownVektor int DownOffset = MAX - DownK; int UpOffset = MAX - UpK; int MaxD = ((UpperA - LowerA + UpperB - LowerB) / 2) + 1; // Debug.Write(2, "SMS", String.Format("Search the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // init vectors DownVector[DownOffset + DownK + 1] = LowerA; UpVector[UpOffset + UpK - 1] = UpperA; for (int D = 0; D <= MaxD; D++) { // Extend the forward path. for (int k = DownK - D; k <= DownK + D; k += 2) { // Debug.Write(0, "SMS", "extend forward path " + k.ToString()); // find the only or better starting point int x, y; if (k == DownK - D) { x = DownVector[DownOffset + k+1]; // down } else { x = DownVector[DownOffset + k-1] + 1; // a step to the right if ((k < DownK + D) && (DownVector[DownOffset + k+1] >= x)) x = DownVector[DownOffset + k+1]; // down } y = x - k; // find the end of the furthest reaching forward D-path in diagonal k. while ((x < UpperA) && (y < UpperB) && (DataA.data[x] == DataB.data[y])) { x++; y++; } DownVector[DownOffset + k] = x; // overlap ? if (oddDelta && (UpK-D < k) && (k < UpK+D)) { if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k // Extend the reverse path. for (int k = UpK - D; k <= UpK + D; k += 2) { // Debug.Write(0, "SMS", "extend reverse path " + k.ToString()); // find the only or better starting point int x, y; if (k == UpK + D) { x = UpVector[UpOffset + k-1]; // up } else { x = UpVector[UpOffset + k+1] - 1; // left if ((k > UpK - D) && (UpVector[UpOffset + k-1] < x)) x = UpVector[UpOffset + k-1]; // up } // if y = x - k; while ((x > LowerA) && (y > LowerB) && (DataA.data[x-1] == DataB.data[y-1])) { x--; y--; // diagonal } UpVector[UpOffset + k] = x; // overlap ? if (! oddDelta && (DownK-D <= k) && (k <= DownK+D)) { if (UpVector[UpOffset + k] <= DownVector[DownOffset + k]) { ret.x = DownVector[DownOffset + k]; ret.y = DownVector[DownOffset + k] - k; // ret.u = UpVector[UpOffset + k]; // 2002.09.20: no need for 2 points // ret.v = UpVector[UpOffset + k] - k; return (ret); } // if } // if } // for k } // for D throw new ApplicationException("the algorithm should never come here."); } // SMS /// /// This is the divide-and-conquer implementation of the longes common-subsequence (LCS) /// algorithm. /// The published algorithm passes recursively parts of the A and B sequences. /// To avoid copying these arrays the lower and upper bounds are passed while the sequences stay constant. /// /// sequence A /// lower bound of the actual range in DataA /// upper bound of the actual range in DataA (exclusive) /// sequence B /// lower bound of the actual range in DataB /// upper bound of the actual range in DataB (exclusive) private static void LCS(DiffData DataA, int LowerA, int UpperA, DiffData DataB, int LowerB, int UpperB) { // Debug.Write(2, "LCS", String.Format("Analyse the box: A[{0}-{1}] to B[{2}-{3}]", LowerA, UpperA, LowerB, UpperB)); // Fast walkthrough equal lines at the start while (LowerA < UpperA && LowerB < UpperB && DataA.data[LowerA] == DataB.data[LowerB]) { LowerA++; LowerB++; } // Fast walkthrough equal lines at the end while (LowerA < UpperA && LowerB < UpperB && DataA.data[UpperA-1] == DataB.data[UpperB-1]) { --UpperA; --UpperB; } if (LowerA == UpperA) { // mark as inserted lines. while (LowerB < UpperB) DataB.modified[LowerB++] = true; } else if (LowerB == UpperB) { // mark as deleted lines. while (LowerA < UpperA) DataA.modified[LowerA++] = true; } else { // Find the middle snakea and length of an optimal path for A and B SMSRD smsrd = SMS(DataA, LowerA, UpperA, DataB, LowerB, UpperB); // Debug.Write(2, "MiddleSnakeData", String.Format("{0},{1}", smsrd.x, smsrd.y)); // The path is from LowerX to (x,y) and (x,y) ot UpperX LCS(DataA, LowerA, smsrd.x, DataB, LowerB, smsrd.y); LCS(DataA, smsrd.x, UpperA, DataB, smsrd.y, UpperB); // 2002.09.20: no need for 2 points } } // LCS() /// Scan the tables of which lines are inserted and deleted, /// producing an edit script in forward order. /// /// dynamic array private static Item[] CreateDiffs(DiffData DataA, DiffData DataB) { ArrayList a = new ArrayList(); Item aItem; Item []result; int StartA, StartB; int LineA, LineB; LineA = 0; LineB = 0; while (LineA < DataA.Length || LineB < DataB.Length) { if ((LineA < DataA.Length) && (! DataA.modified[LineA]) && (LineB < DataB.Length) && (! DataB.modified[LineB])) { // equal lines LineA++; LineB++; } else { // maybe deleted and/or inserted lines StartA = LineA; StartB = LineB; while (LineA < DataA.Length && (LineB >= DataB.Length || DataA.modified[LineA])) // while (LineA < DataA.Length && DataA.modified[LineA]) LineA++; while (LineB < DataB.Length && (LineA >= DataA.Length || DataB.modified[LineB])) // while (LineB < DataB.Length && DataB.modified[LineB]) LineB++; if ((StartA < LineA) || (StartB < LineB)) { // store a new difference-item aItem = new Item(); aItem.StartA = StartA; aItem.StartB = StartB; aItem.deletedA = LineA - StartA; aItem.insertedB = LineB - StartB; a.Add(aItem); } // if } // if } // while result = new Item[a.Count]; a.CopyTo(result); return (result); } } // class Diff /// Data on one input file being compared. /// internal class DiffData { /// Number of elements (lines). internal int Length; /// Buffer of numbers that will be compared. internal int[] data; /// /// Array of booleans that flag for modified data. /// This is the result of the diff. /// This means deletedA in the first Data or inserted in the second Data. /// internal bool[] modified; /// /// Initialize the Diff-Data buffer. /// /// reference to the buffer internal DiffData(int[] initData) { data = initData; Length = initData.Length; modified = new bool[Length + 2]; } // DiffData } // class DiffData } // namespace